Experimental Observation of Berry Phases in Optical Moebius-strip Microcavities. J. Wang, S. Valligatla, Y. Yin, L. Schwarz, M. Medina-Sánchez, S. Baunack, C. Hua Lee, R. Thomale, S. Li, V. M. Fomin, L. Ma, O.G. Schmidt. Just accepted in Nat. Photonics. 2022
LinkSelf-assembled sensor-in-a-tube as versatile tool for label-free EIS viability investigation of cervical cancer cells. E. Ghosh, A. I. Egunov, D. Karnaushenko, M. Medina-Sánchez, O.G. Schmidt. Frequenz, 76, 11-12, 2022.
LinkMultifunctional 4D-printed sperm-hybrid microcarriers for assisted reproduction. F. Rajabasadi, S. Moreno, K. Fichna, A. Aziz, D. Appelhans, O.G. Schmidt, M. Medina-Sánchez. Adv. Mater. Just accepted. 2022
LinkImaging and control of nanomaterial-decorated micromotors, A. Aziz, R. Nauber, A. Sánchez-Iglesias, L. M. Marzán, O.G. Schmidt, and M. Medina-Sánchez. International Conference on Manipulation, Automation, and Robotics at Small Scales, pp. 1-6, doi: 10.1109/MARSS55884.2022.9870252.
LinkSmall Scale Propulsion: How Systematic Studies of Low Reynolds Number Physics Can Bring Micro/Nanomachines to New Horizons, P. Wrede, M. Medina-Sánchez, and V.M. Fomin. Journal of Nanotechnology and Nanomaterials, 2022, 3,1.
LinkReal-Time Tracking of Individual Droplets in Multiphase Microfluidics. B. Ibarlucea, J. Schütt, L. Baraban, D. Makarov, M. Medina-Sánchez, and G. Cuniberti. Book: Microfluidics and Nanofluidics - Fundamentals and Applications. DOI: 10.5772/intechopen. 106796, 2022.
LinkContinuous monitoring of molecular biomarkers in microfluidic devices, A. Idili, H. Montón, M. Medina-Sánchez, B. Ibarlucea, G. Cuniberti, O.G. Schmidt, K. W. Plaxco, C. Parolo. Progress in Molecular Biology and Translational Science, 187, 1.
LinkElectronically integrated microcatheters based on self-assembling polymer films. B. Rivkin, C. Becker, B. Singh, A. Aziz, F. Akbar, A. Egunov, D.D. Karnaushenko, R. Naumann, R. Schäfer, M. Medina-Sánchez, D. Karnaushenko, and O.G. Schmidt, Science Advances. 2021. 7(51), eabl5408.
LinkSelf-sufficient self-oscillating microsystem driven by low power at low Reynolds numbers, F. Akbar, B. Rivkin, A. Aziz, C. Becker, D. D. Karnaushenko, M. Medina-Sánchez, D. Karnaushenko, and O. G. Schmidt, Science Advances. 2021, 7, eabj0767
LinkNano-biosupercapacitors enable autarkic sensor operation in blood, Y. Lee, V.K. Bandari, Z. Li, M. Medina-Sánchez, M.F. Maitz, D. Karnaushenko, M. V. Tsurkan, D.D. Karnaushenko, and O.G. Schmidt, Nature Communications. 12, 4967 (2021).
Mariana Medina-Sánchez 3, Manfred F. Maitz 4, Daniil Karnaushenko3, Mikhail V. Tsurkan 4, Dmitriy D. Karnaushenko 3 & Oliver G. Schmidt
LinkContinuous monitoring of molecular biomarkers in microfluidic devices, A. Idili A, H. Montón, M. Medina-Sánchez, B. Ibarlucea, G. Cuniberti, O.G. Schmidt, K. W. Plaxco, and C. Parolo. Progress in Molecular Biology and Translational Science. 2022, 87(1), 295-333.
LinkDual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo, A. Aziz, J. Holthof, S. Meyer, O.G. Schmidt, and M. Medina-Sánchez. Advanced Healthcare Materials. 2021, 10, 2101077.
LinkMicromotor-mediated sperm constrictions for improved swimming performance, F. Striggow, L. Nadporozhskaia, B. M. Friedrich, O.G. Schmidt, and M. Medina-Sánchez, The European Physical Journal E, 2021, 44(67), 1-15.
Link3D and 4D Lithography of Untethered Microrobots, F. Rajabasadi, L. Schwarz, M. Medina-Sánchez, and O.G. Schmidt. Progress in Material Science, 2021, 120, 1-32.
LinkRolled-Up Metal Oxide Microscaffolds to Study Early Bone Formation at Single Cell Resolution, R. Herzer, A. Gebert, U. Hempel, F. Hebenstreit, S. Oswald, C.Damm, O.G. Schmidt, and M. Medina‐Sánchez, Small. 2021, 17(12), 2170053.
LinkSwitching Propulsion Mechanisms of Tubular Catalytic Micromotors. P. Wrede, M. Medina‐Sánchez, V.M. Fomin, and O.G. Schmidt, Small, 2021. 17(12), 2006449.
LinkShape-Controlled Flexible Microelectronics Facilitated by Integrated Sensors and Conductive Polymer Actuators. B. Rivkin, C. Becker, F. Akbar, R. Ravishankar, D.D. Karnaushenko, R. Naumann, A. Mirhajivarzaneh, M. Medina-Sánchez, D. Karnaushenko, and O.G. Schmidt, Advanced Intelligent Systems. 2021, 3(6), 2000238.
LinkImpedimetric Microfluidic Sensor-in-a-Tube for Label-Free Immune Cell Analysis. A. Egunov, Z. Dou, D.D. Karnaushenko, F. Hebenstreit, N. Kretschmann, K. Akgün, T. Ziemssen, D. Karnaushenko, M. Medina-Sánchez, and O.G. Schmidt, Small, 2021, 17(5), 2002549.
LinkEngineering microrobots for targeted cancer therapies from a medical perspective. C. Schmidt, M. Medina-Sánchez, R.J. Edmondson, and O.G. Schmidt, Nature Communications, 2020. 11(1), 1-18.
LinkHuman spermbots for patient-representative 3D ovarian cancer cell treatment. H. Xu, M. Medina-Sánchez, W. Zhang, M.P. Seaton, D.R. Brison, R.J, Edmondson, O.G. Schmidt, et al. Nanoscale, 2020, 12(39), 20467-20481.
LinkMedical Imaging of Microrobots: Toward In Vivo Applications. A. Aziz, S. Pane, V. Iacovacci, N. Koukourakis, J. Czarske, A. Menciassi, M. Medina-Sánchez, and O.G. Schmidt, ACS Nano, 2020, 14(9), 10865-10893.
LinkA rotating spiral micromotor for noninvasive zygote transfer. L. Schwarz, D.D. Karnaushenko, F. Hebenstreit,R. Naumann, O.G. Schmidt, and M. Medina‐Sánchez, Advanced Science, 2020, 7(18), 2000843.
LinkIRONSperm: Sperm-templated soft magnetic microrobots, V. Magdanz, I. S. M. Khalil, J. Simmchen, G.P. Furtado, S.Mohanty, J. Gebauer, H. Xu, A. Klingner, A. Aziz, M.Medina-Sánchez, O.G. Schmidt, and S. Misra, Science Advances, 2020, 6(eaba5855) 1-15.
LinkSperm‐Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. F. Striggow, M. Medina‐Sánchez, G.K. Auernhammer, V. Magdanz, B.M. Friedrich, and O.G. Schmidt, Small, 2020, 16(24), 2000213.
LinkMagnetic Miromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. H. Xu, M. Medina-Sánchez, and O.G. Schmidt, Angewandte Chemie International Edition, 2020, 59(35), 15029-15037.
LinkSilicon‐Based Integrated Label‐Free Optofluidic Biosensors: Latest Advances and Roadmap, J. Wang, M. Medina-Sánchez, Y. Yin, L. Ma, R. Herzer, and O.G. Schmidt, Advanced Materials Technologies, 2020, 5 (1901138) 1-24.
LinkA flexible microsystem capable of controlled motion and actuation by wireless power transfer, V. Kumar Bandari, Y. Nan, D. Karnaushenko, Y. Hong, B. Sun, F. Striggow, D. D. Karnaushenko, C. Becker, M. Faghih, M. Medina-Sánchez, F. Zhu, and O. G. Schmidt. Nature Electronics, 2020, 3 (3), 172-180.
LinkSperm Micromotors for Cargo Delivery through Flowing Blood, H. Xu, M. Medina-Sánchez, M. F. Maitz, C. Werner, and O.G. Schmidt, ACS Nano, 2020 14 (3), 2982-2993.
LinkSperm-hybrid micromotors: on-board assistance for nature’s bustling swimmers, L. Schwarz, M. Medina-Sánchez, and O.G. Schmidt, Reproduction, 2020, 159(2), 83-96.
LinkAdvanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light, N. Wolff, V. Ciobanu, M.Enachi, M. Kamp, T. Braniste, V. Duppel, S. Shree, S.Raevschi, M. Medina-Sánchez, R. Adelung, O.G Schmidt, L. Kienle, and I. Tiginyanu, Small, 2019, 16(1905141) 1-10.
LinkBlood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips, C. Richard, A. Fakhfouri, M. Colditz, F. Striggow, R. Kronstein-Wiedemann, T. Tonn, M. Medina-Sánchez, O.G. Schmidt, T. Gemming, and A. Winkler, Lab on a Chip, 2019, 19,4043-4051.
LinkReal‐Time IR Tracking of Single Reflective Micromotors through Scattering Tissues. A. Aziz, M. Medina-Sánchez, N. Koukourakis, J. Wang, R. Kuschmierz, H. Radner, J.W. Czarke, and O.G. Schmidt, Advanced Functional Materials, 2019, 29(51), 1905272.
LinkReal-time optoacoustic tracking of single moving micro-objects in deep phantom and ex vivo tissues. A. Aziz, M. Medina-Sánchez, J. Claussen, and O.G. Schmidt, Nano Letters, 2019, 19(9), 6612-6620.
LinkModeling of Spermbots in a Viscous Colloidal Suspension, I.S.M. Khalil, A. Klingner, V.Magdanz, F. Striggow, M. Medina‐Sánchez, O.G. Schmidt, and S. Misra. Advanced theory and simulations, 2019, 2 (1900072) 1-11.
LinkThree-Dimensional Microtubular Devices for Lab-on-a-Chip Sensing Applications, J. Wang, D. Karnaushenko, M. Medina-Sánchez, Y. Yin, L. Ma, and O.G. Schmidt, ACS Sensors, 2019, 4 (6), 1476-1496.
LinkSperm-hybrid micromotor for targeted drug delivery. H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, and O.G. Schmidt, ACS Nano, 2018, 12(1), 327-337.
LinkSwimming microrobots: Soft, reconfigurable, and smart. M. Medina-Sánchez, V. Magdanz, M. Guix, V.M. Fomin, and O.G. Schmidt, Advanced Functional Materials, 2018, 28(25), 1707228.
LinkMicro- and nano-motors: the new generation of drug carriers. M. Medina-Sánchez, H. Xu, and O.G. Schmidt, Therapeutic Delivery, 2018, 9(4), 303-316.
LinkSelf-Propelled Micro/Nanoparticle Motors. M. Guix, S.M. Weiz, O.G. Schmidt, and M. Medina-Sánchez, Particle & Particle Systems Characterization, 2018, 35(2), 1700382.
LinkMicrosystems for Single-Cell analysis. S.M. Weiz, M. Medina-Sánchez, O.G. Schmidt, and O.G., Advanced Biosystems, 2018, 2(2), 1700193.
LinkHybrid BioMicromotors, L. Schwarz, M. Medina-Sánchez, and O.G. Schmidt, Applied Physics Reviews, 2017, 4, 031301.
LinkMedical microbots need better imaging and control M. Medina-Sánchez, O.G. Schmidt, Nature, 2017, 545, 406-408.
LinkSpermatozoa as Functional Components of Robotic Microswimmers. V. Magdanz, M. Medina-Sánchez, L. Schwarz, H. Xu, J. Elgeti, and O.G. Schmidt, Advanced Materials, 2017, 29, 1606301.
LinkCellular Cargo Delivery: Toward Assisted Fertilization by Sperm-Carrying Micromotors. M. Medina-Sánchez, L. Schwarz, A. K. Meyer, F. Hebenstreit, and O.G. Schmidt, Nano Letters, 2016, 16 (1), 555-561.